Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
Int J Biol Sci ; 20(4): 1297-1313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385080

RESUMEN

Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVß3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.


Asunto(s)
Neoplasias Óseas , N-Acetilgalactosaminiltransferasas , Neoplasias de la Próstata , Masculino , Humanos , Glicosilación , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias de la Próstata/metabolismo , Neoplasias Óseas/metabolismo , Microambiente Tumoral , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo
2.
Int Endod J ; 56(10): 1284-1300, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37485765

RESUMEN

AIM: Recently, miR-27b-5p was shown to be abundantly expressed in extracellular vehicles (EVs) from the inflammatory microenvironment. This study determined the role of miR-27b-5p in regulating osteogenic and odontogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) and further examined the regulatory mechanism of bone morphogenetic protein receptor type-1A (BMPR1A). METHODOLOGY: Characteristics of SHEDs and SHEDs-EVs derived from SHEDs were evaluated respectively. The expression of miR-27b-5p in SHEDs and EVs was detected during osteo-induction. Mechanically, SHEDs were treated with miR-27b-5p mimics or an inhibitor, and the osteogenic/odontogenic differentiation and proliferation were assessed. Bioinformatic analysis and luciferase reporter were utilized for target gene prediction and verification. Finally, BMPR1A-overexpressed plasmids were transfected into SHEDs to investigate the participation of the BMPR1A/SMAD4 pathway. Data were analysed using Student's t-test, one-way analysis of variance and Chi-square test. RESULTS: MiR-27b-5p was expressed in both SHEDs and EVs and was significantly increased at the initial stage of differentiation and then decreased in a time-dependent manner (p < .01). Upregulation of miR-27b-5p significantly suppressed osteogenic/odontogenic differentiation of SHEDs and inhibited proliferation (p < .05), whereas inhibition of miR-27b-5p enhanced the differentiation (p < .05). Dual-luciferase reporter assay and pull-down assay confirmed the binding site between miR-27b-5p and BMPR1A (p < .05). The overexpression of BMPR1A rescued the effect of miR-27b-5p, while contributed to the decrease of pluripotency (p < .05). Additionally, miR-27b-5p maintained pluripotency in BMPR1A-overexpressed SHEDs (p < .05). CONCLUSIONS: MiR-27b-5p in SHEDs/EVs was inversely associated with differentiation and suppressed the osteogenic and odontogenic differentiation of SHEDs and maintained the pluripotency of SHEDs partly by shuttering BMPR1A-targeting BMP signalling. Theoretically, inhibition of miR-27b-5p represents a potential strategy to promote osteanagenesis and dentinogenesis. However, miR-27b-5p capsuled EVs might maintain cell pluripotency and self-renewal for non-cell-targeted therapy.


Asunto(s)
MicroARNs , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , MicroARNs/metabolismo , Osteogénesis/genética , Células Madre , Diente Primario
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37373155

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Quinasas Ciclina-Dependientes/metabolismo , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Transducción de Señal
4.
Hypertension ; 80(6): 1231-1244, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36999441

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) contractility is critical for blood pressure regulation and vascular homeostasis. Identifying the key molecule that maintains VSMC contractility may provide a novel therapeutic target for vascular remodeling. ALK3 (activin receptor-like kinase 3) is a serine/threonine kinase receptor, and deletion of ALK3 causes embryonic lethality. However, little is known about the role of ALK3 in postnatal arterial function and homeostasis. METHODS: We conducted in vivo studies in a tamoxifen-induced postnatal VSMC-specific ALK3 deletion mice suitable for analysis of blood pressure and vascular contractility. Additionally, the role of ALK3 on VSMC was determined using Western blot, collagen-based contraction assay and traction force microscopy. Furthermore, interactome analysis were performed to identify the ALK3-associated proteins and bioluminescence resonance energy transfer assay was used to characterize Gαq activation. RESULTS: ALK3 deficiency in VSMC led to spontaneous hypotension and impaired response to angiotensin II in mice. In vivo and in vitro data revealed that ALK3 deficiency impaired contraction force generation by VSMCs, repressed the expression of contractile proteins, and inhibited the phosphorylation of myosin light chain. Mechanistically, Smad1/5/8 signaling mediated the ALK3-modulated contractile protein expressions but not myosin light chain phosphorylation. Furthermore, interactome analysis revealed that ALK3 directly interacted with and activated Gαq (guanine nucleotide-binding protein subunit αq)/Gα11 (guanine nucleotide-binding protein subunit α11), thereby stimulating myosin light chain phosphorylation and VSMC contraction. CONCLUSIONS: Our study revealed that in addition to canonical Smad1/5/8 signaling, ALK3 modulates VSMC contractility through direct interaction with Gαq/Gα11, and therefore, might serve as a potential target for modulating aortic wall homeostasis.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Músculo Liso Vascular , Ratones , Animales , Subunidades de Proteína/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Presión Sanguínea/fisiología , Proteínas de Unión al GTP/metabolismo , Miocitos del Músculo Liso/metabolismo , Nucleótidos de Guanina/metabolismo , Células Cultivadas
5.
Cardiovasc Res ; 119(3): 813-825, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36166408

RESUMEN

AIMS: Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS: We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFß) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS: We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Hipertensión Pulmonar , Proteína 2 Inhibidora de la Diferenciación , Hipertensión Arterial Pulmonar , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Animales , Ratones , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transición Epitelial-Mesenquimal , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
6.
J Mol Cell Biol ; 14(9)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36581316

RESUMEN

Thyroid hormone excess secondary to global type 3 deiodinase (DIO3) deficiency leads to increased locomotor activity and reduced adiposity, but also to concurrent alterations in parameters of the leptin-melanocortin system that would predict obesity. To distinguish the underlying contributions to the energy balance phenotype of DIO3 deficiency, we generated mice with thyroid hormone excess targeted to pro-opiomelanocortin (POMC)-expressing cells via cell-specific DIO3 inactivation. These mice exhibit a male-specific phenotype of reduced hypothalamic Pomc expression, hyperphagia, and increased activity in brown adipose tissue, with adiposity and serum levels of leptin and thyroid hormones remained normal. These male mice also manifest a marked and widespread hypothalamic reduction in the expression of bone morphogenetic receptor 1a (BMPR1A), which has been shown to cause similar phenotypes when inactivated in POMC-expressing cells. Our results indicate that developmental overexposure to thyroid hormone in POMC-expressing cells programs energy balance mechanisms in a sexually dimorphic manner by suppressing adult hypothalamic BMPR1A expression.


Asunto(s)
Tejido Adiposo Pardo , Proopiomelanocortina , Hormonas Tiroideas , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Hormonas Tiroideas/metabolismo
7.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36205720

RESUMEN

The spatial organization of cell-surface receptors is fundamental for the coordination of biological responses to physical and biochemical cues of the extracellular matrix. How serine/threonine kinase receptors, ALK3-BMPRII, cooperate with integrins upon BMP2 to drive cell migration is unknown. Whether the dynamics between integrins and BMP receptors intertwine in space and time to guide adhesive processes is yet to be elucidated. We found that BMP2 stimulation controls the spatial organization of BMPRs by segregating ALK3 from BMPRII into ß3 integrin-containing focal adhesions. The selective recruitment of ALK3 to focal adhesions requires ß3 integrin engagement and ALK3 activation. BMP2 controls the partitioning of immobilized ALK3 within and outside focal adhesions according to single-protein tracking and super-resolution imaging. The spatial control of ALK3 in focal adhesions by optogenetics indicates that ALK3 acts as an adhesive receptor by eliciting cell spreading required for cell migration. ALK3 segregation from BMPRII in integrin-based adhesions is a key aspect of the spatio-temporal control of BMPR signaling.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Integrina beta3 , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Adhesión Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Integrina beta3/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
8.
Biochem Biophys Res Commun ; 629: 101-105, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116371

RESUMEN

Accumulated studies have suggested that bone morphogenetic proteins (BMPs) are critical for skin development. However, it remains elusive how BMP signaling via ALK2 (aka ACVR1), one of the important BMP type I receptors, regulates keratinocyte differentiation. To address this question, we utilized a genetic system that enhances BMP signaling via ALK2 in an epidermis-specific manner in mice (hereafter ca-Alk2:K14-Cre). Ca-Alk2:K14-Cre mice displayed a sticky and hairless skin phenotype with a thinner epidermis incapable of differentiating. Although cellular proliferation and survival were comparable between wild-type and ca-Alk2:K14-Cre mice, skin differentiation was severely hampered in ca-Alk2:K14-Cre mice. To uncover the mechanism of altered keratinocyte differentiation, we performed a transcriptome analysis. As a result, we found that the expression levels of cell cycle inhibitor p21 were increased in ca-Alk2:K14-Cre mice. Our findings suggest that aberrant BMP signaling via ALK2 positively regulates p21 expression that attenuates keratinocyte differentiation, and further highlights the critical role of BMP signaling in skin development.


Asunto(s)
Receptores de Activinas Tipo I , Proteínas Morfogenéticas Óseas , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Queratinocitos/metabolismo , Ratones , Transducción de Señal/genética
9.
Nat Commun ; 13(1): 4141, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842443

RESUMEN

Organotropism during cancer metastasis occurs frequently but the underlying mechanism remains poorly understood. Here, we show that lysosomal protein transmembrane 5 (LAPTM5) promotes lung-specific metastasis in renal cancer. LAPTM5 sustains self-renewal and cancer stem cell-like traits of renal cancer cells by blocking the function of lung-derived bone morphogenetic proteins (BMPs). Mechanistic investigations showed that LAPTM5 recruits WWP2, which binds to the BMP receptor BMPR1A and mediates its lysosomal sorting, ubiquitination and ultimate degradation. BMPR1A expression was restored by the lysosomal inhibitor chloroquine. LAPTM5 expression could also serve as an independent predictor of lung metastasis in renal cancer. Lastly, elevation of LAPTM5 expression in lung metastases is a common phenomenon in multiple cancer types. Our results reveal a molecular mechanism underlying lung-specific metastasis and identify LAPTM5 as a potential therapeutic target for cancers with lung metastasis.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Neoplasias Renales , Neoplasias Pulmonares , Ubiquitina-Proteína Ligasas , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Humanos , Neoplasias Renales/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Comput Intell Neurosci ; 2022: 6390812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720932

RESUMEN

Iron overload is directly associated with diabetes mellitus, loss of islet beta cell, and insulin resistance. Likewise, long noncoding RNA (lncRNA) is associated with type 2 diabetes (T2D). Moreover, lncRNAs could be induced by iron overload. Therefore, we are going to explore the molecular mechanism of lncRNA XIST in iron overload-related T2D. Real-time quantitative PCR and Western blot were used to detect gene and protein levels, respectively. TUNEL and MTT assay were performed to examine cell survival. The glucose test strip, colorimetric analysis kit, ferritin ELISA kit, and insulin ELISA kit were performed to examine the levels of glycolic, iron, and total iron-binding capacity, ferritin, and insulin in serum. Fluorospectrophotometry assay was used to examine labile iron pool level. XIST was higher expressed in T2D and iron overload-related T2D rat tissues and cells, and iron overload-induced promoted XIST expression in T2D. Higher XIST expression was associated with iron overload in patients with T2D. Knockdown of XIST alleviated iron overload and iron overload-induced INS-1 cells injury. Further, we found that XIST can sponge miR-130a-3p to trigger receptor-like kinase 2 (ALK2) expression. Moreover, knockdown of ALK2 alleviated iron overload and iron overload-induced INS-1 cells injury by inhibiting bone morphogenetic protein 6 (BMP6)/ALK2/SMAD1/5/8 axis but reversed with XIST upregulation, which was terminally boosted by overexpression of miR-130a-3p. XIST has the capacity to promote iron overload and iron overload-related T2D initiation and development through inhibition of ALK2 expression by sponging miR-130a-3p, and that targeting this axis may be an effective strategy for treating patients with T2D.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Diabetes Mellitus Tipo 2 , Sobrecarga de Hierro , Islotes Pancreáticos , MicroARNs , ARN Largo no Codificante , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ferritinas , Insulinas/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas
11.
J Clin Periodontol ; 49(9): 945-956, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35634660

RESUMEN

AIM: To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signalling in Axin2-expressing cells during periodontium development. MATERIALS AND METHODS: Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-computed tomography, calcein green, and alizarin red double-labelling, scanning electron microscopy, and histological and immunostaining assays, were used to analyse periodontal phenotypes and molecular mechanisms. RESULTS: X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibres. CONCLUSIONS: Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signalling.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Ligamento Periodontal , Animales , Proteína Axina/genética , Proteínas Morfogenéticas Óseas , Cementogénesis , Cemento Dental , Ratones , Ligamento Periodontal/crecimiento & desarrollo , Ligamento Periodontal/metabolismo , Periodoncio , Transducción de Señal , Microtomografía por Rayos X
12.
Biomed Pharmacother ; 149: 112910, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35616049

RESUMEN

Aortic stenosis (AS) exposes the left ventricle (LV) to pressure overload leading to detrimental LV remodeling and heart failure. In animal models of cardiac injury or hemodynamic stress, bone morphogenetic protein-7 (BMP7) protects LV against remodeling by counteracting TGF-ß effects. BMP receptor 1A (BMPR1A) might mediate BMP7 antifibrotic effects. Herein we evaluated BMP7-based peptides, THR123 and THR184, agonists of BMPR1A, as cardioprotective drugs in a pressure overload model. We studied patients with AS, mice subjected to four-week transverse aortic constriction (TAC) and TAC release (de-TAC). The LV of AS patients and TAC mice featured Bmpr1a downregulation. Also, pSMAD1/5/(8)9 was reduced in TAC mice. Pre-emptive treatment of mice with THR123 and THR184, during the four-week TAC period, normalized pSMAD1/5/(8)9 levels in the LV, attenuated overexpression of remodeling-related genes (Col 1α1, ß-MHC, BNP), palliated structural damage (hypertrophy and fibrosis) and alleviated LV dysfunction (systolic and diastolic). THR184 administration, starting fifteen days after TAC, halted the ongoing remodeling and partially reversed LV dysfunction. The reverse remodeling after pressure overload release was facilitated by THR184. Both peptides diminished the TGF-ß1-induced hypertrophic gene program in cardiomyocytes, collagen transcriptional activation in fibroblasts, and differentiation of cardiac fibroblasts to myofibroblasts. Molecular docking suggests that both peptides bind with similar binding energies to the BMP7 binding domain at the BMPR1A. The present study results provide a preclinical proof-of-concept of potential therapeutic benefits of BMP7-based small peptides, which function as agonists of BMPR1A, against the pathological LV remodeling in the context of aortic stenosis.


Asunto(s)
Estenosis de la Válvula Aórtica , Ventrículos Cardíacos , Animales , Estenosis de la Válvula Aórtica/metabolismo , Proteína Morfogenética Ósea 7/farmacología , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Remodelación Ventricular
13.
Cell Cycle ; 21(15): 1599-1618, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35404759

RESUMEN

Endometrial carcinoma (EC) originates from the endometrium and is one of the most common tumors in female patients, and its incidence has continued to increase in recent decades. LncRNAs are involved in the pathogenesis and metastasis of a variety of malignant tumors, which indicates that lncRNAs can be used as tumor diagnostic markers and potential therapeutic targets. In this study, we analyzed the RNA transcripts of EC cells from The Cancer Genome Atlas (TCGA) and first reported a novel lncRNA, BMPR1B-AS1, that was more highly expressed in endometrial cancer tissues than in adjacent tissues, and BMPR1B-AS1 could promote endometrial cancer cell proliferation and metastasis. Bioinformatics prediction and experimental results both suggested that BMPR1B-AS1 could modulate the malignant behaviors of endometrial cancer cell lines by sponging miR-7-2-3p to modulate DCLK1, and a DCLK1 inhibitor blocked the activation of the PI3K/Akt/NF-κB signaling pathway. Collectively, this study suggests that the BMPR1B-AS1/miR-7-2-3p/DCLK1 axis contributes to the proliferation and metastasis of endometrial cancer cells via the PI3K/Akt/NF-κB pathway.


Asunto(s)
Neoplasias Endometriales , MicroARNs , ARN Largo no Codificante , Biomarcadores de Tumor , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasas Similares a Doblecortina , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Sci Rep ; 12(1): 4359, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288625

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine disorder that occurs in women of reproductive age. Anovulation caused by abnormal follicular development is still the main characteristic of PCOS patients with infertile. Granulosa cell (GC) is an important part of the follicular microenvironment, the dysfunction of which can affect follicular development. Increasing evidence indicates that exosomal miRNAs derived from the follicular fluid (FF) of patients play critical roles during PCOS. However, which follicular fluid-derived exosomal miRNAs play a pivotal role in controlling granulosa cell function and consequently follicular development remain largely unknown, as does the underlying mechanism. Herein, we showed that miR-143-3p is highly expressed in the follicular fluid exosomes of patients with PCOS and can be delivered into granulosa cells. Furthermore, functional experiments showed that translocated miR-143-3p promoted granulosa cell apoptosis, which is important in follicle development. Mechanistically, BMPR1A was identified as a direct target of miR-143-3p. Overexpression of BMPR1A reversed the effects of exosomal miR-143-3p on GC apoptosis and proliferation by activating the Smad1/5/8 signaling pathway. These results demonstrate that miR-143-3p-containing exosomes derived from PCOS follicular fluid promoted granulosa cell apoptosis by targeting BMPR1A and blocking the Smad1/5/8 signaling pathway. Our findings provide a novel mechanism underlying the roles of exosomal-miRNAs in the follicular fluid of PCOS patients and facilitate the development of therapeutic strategies for PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Apoptosis/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proliferación Celular/genética , Femenino , Líquido Folicular/metabolismo , Células de la Granulosa/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Microambiente Tumoral
15.
Cancer Sci ; 113(5): 1639-1651, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35279920

RESUMEN

Oral squamous cell carcinoma (OSCC) is an aggressive tumor that usually invades the maxilla or mandible. The extent and pattern of mandibular bone invasion caused by OSCC are the most important factors determining the treatment plan and patients' prognosis. Yet, the process of mandibular invasion is not fully understood. The following study explores the molecular mechanism that regulates the mandibular invasion of OSCC by focusing on bone morphogenetic protein receptor 1α (BMPR1α) and Sonic hedgehog (SHH) signals. We found that BMPR1α was positively correlated to bone defect of OSCC patients. Mechanistically, BMPR1α signaling regulated the differentiation and resorption activity of osteoclasts through the interaction of OSCC cells and osteoclast progenitors, and this process was mediated by SHH secreted by tumor cells. The inhibition of SHH protected bone from tumor-induced osteolytic activity. These results provide a potential new treatment strategy for controlling OSCC from invading the jawbones.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Receptores de Proteínas Morfogenéticas Óseas , Proteínas Morfogenéticas Óseas , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias de la Boca/patología , Osteoclastos , Osteogénesis , Carcinoma de Células Escamosas de Cabeza y Cuello
16.
BMC Biol ; 20(1): 50, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35177083

RESUMEN

BACKGROUND: Activins and bone morphogenetic proteins (BMPs) play critical, sometimes opposing roles, in multiple physiological and pathological processes and diseases. They signal to distinct Smad branches; activins signal mainly to Smad2/3, while BMPs activate mainly Smad1/5/8. This gives rise to the possibility that competition between the different type I receptors through which activin and BMP signal for common type II receptors can provide a mechanism for fine-tuning the cellular response to activin/BMP stimuli. Among the transforming growth factor-ß superfamily type II receptors, ACVR2A/B are highly promiscuous, due to their ability to interact with different type I receptors (e.g., ALK4 vs. ALK2/3/6) and with their respective ligands [activin A (ActA) vs. BMP9/2]. However, studies on complex formation between these full-length receptors situated at the plasma membrane, and especially on the potential competition between the different activin and BMP type I receptors for a common activin type II receptor, were lacking. RESULTS: We employed a combination of IgG-mediated patching-immobilization of several type I receptors in the absence or presence of ligands with fluorescence recovery after photobleaching (FRAP) measurements on the lateral diffusion of an activin type II receptor, ACVR2A, to demonstrate the principle of competition between type I receptors for ACVR2. Our results show that ACVR2A can form stable heteromeric complexes with ALK4 (an activin type I receptor), as well as with several BMP type I receptors (ALK2/3/6). Of note, ALK4 and the BMP type I receptors competed for binding ACVR2A. To assess the implications of this competition for signaling output, we first validated that in our cell model system (U2OS cells), ACVR2/ALK4 transduce ActA signaling to Smad2/3, while BMP9 signaling to Smad1/5/8 employ ACVR2/ALK2 or ACVR2/ALK3. By combining ligand stimulation with overexpression of a competing type I receptor, we showed that differential complex formation of distinct type I receptors with a common type II receptor balances the signaling to the two Smad branches. CONCLUSIONS: Different type I receptors that signal to distinct Smad pathways (Smad2/3 vs. Smad1/5/8) compete for binding to common activin type II receptors. This provides a novel mechanism to balance signaling between Smad2/3 and Smad1/5/8.


Asunto(s)
Activinas , Factor de Crecimiento Transformador beta , Activinas/química , Activinas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Ligandos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Cell Tissue Res ; 388(2): 301-312, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35192037

RESUMEN

N6-methyladenosine (m6A) modification plays a crucial role in the progression of osteoporosis (OP). The study aimed to explore the effects of methyltransferase-like 3 (METTL3) in OP. The levels of METTL3, LINC00657, miR-144-3p and BMPR1B were detected using qPCR. Osteogenesis was assessed using alizarin red and alkaline phosphatase (ALP) staining assays. The protein expression of Bglap, Runx2 and Col1a1 was measured by western blot. The targets of LINC00657 and miR-144-3p were screened by bioinformatic analysis. The interaction between miR-144-3p and LINC00657 or BMPR1B was analyzed by dual-luciferase reporter assay and RNA pull-down assay. The results showed that METTL3 was downregulated in OP. METTL3 mediated m6A methylation of LINC00657 to promote the development of osteogenesis. Further study indicated that LINC00657 functioned as a ceRNA to upregulate BMPR1B via sponging miR-144-3p. Additionally, BMPR1B knockdown alleviated the effects of METTL3 on osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Taken together, METTL3 facilitated osteogenic differentiation of BMSCs via the LINC00657/miR-144-3p/BMPR1B axis. Our findings may provide a novel insight of m6A methylation in the development of OP.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo
18.
Genet Med ; 24(5): 1073-1084, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35034853

RESUMEN

PURPOSE: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. METHODS: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. RESULTS: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. CONCLUSION: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis.


Asunto(s)
Coloboma , Microftalmía , Animales , Ancirinas/genética , Ancirinas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Coloboma/genética , Pruebas Genéticas , Humanos , Ratones , Microftalmía/genética , Fenotipo , Pez Cebra/genética
19.
Gene ; 810: 146066, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34838638

RESUMEN

Bone morphogenetic protein-6 (BMP-6) and dihydrotestosterone (DHT) affect steroid synthesis in follicles and regulate cell proliferation in the ovaries of female animals. However, little is known about granular cells (GCs) in sheep. We identified the key BMP-6 receptors, activin receptor-like kinase(ALK-6), and bone morphogenetic protein receptor type 2 (BMPRII) in sheep follicles using immunohistochemistry (IHC) and immunofluorescence (IF). Both ALK-6 and BMPRII were expressed in the GC layer, GC membranes, and cytoplasm. We evaluated ALK-6 and BMPRII expression at the follicular development stage using quantitative real-time PCR and western blotting to detect sheep GCs from large, medium, and small follicles (diameters of ≥5, 2-5, and ≤2 mm, respectively). The mRNA abundance and protein expression of ALK-6 and BMPRII were significantly higher in GCs from large follicles compared to those in GCs from small follicles (P < 0.05) and were the lowest in GCs from medium follicles. To assess whether DHT affects ALK-6 and BMPRII expression in sheep GCs, we cultured GCs from large follicles in vitro then incubated them with DHT (10-11, 10-9, 10-7 M). We found that 10-7-M DHT significantly inhibited ALK-6 and BMPRII mRNA and protein (P < 0.05). We further explored whether DHT regulates ALK-6 and BMPRII through the nuclear androgen receptor (AR) pathway and found that 10-6-M flutamide, a non-selective androgen inhibitor, partially relieved the inhibitory effect of 10-7-M DHT on ALK-6 and BMPRII expression. Thus, GCs in sheep antral follicles differentially expressed ALK-6 and BMPRII at various stages, indicating that BMP-6 plays different roles to some extent during the development of antral follicles, and that high concentrations of DHT can inhibit the expression of ALK-6 and BMPRII via the androgen receptor pathway in sheep GCs. The present study aimed to determine the expression of the main BMP-6-related main receptors, namely, ALK-6 and BMPRII, during the development of GCs in sheep antral follicles and a potential mechanism of DHT regulation in sheep GCs. Our findings lay a foundation for the further exploration of the effects of ovarian BMP-6 expression on follicular development.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Dihidrotestosterona/metabolismo , Células de la Granulosa/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Femenino , ARN Mensajero/genética , Receptores Androgénicos/metabolismo , Oveja Doméstica
20.
Biochim Biophys Acta Gen Subj ; 1866(1): 130046, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743989

RESUMEN

BACKGROUND: Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS: GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS: The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION: These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE: Our results identify the involvement of GALNT8 in regulating ERα expression.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptor alfa de Estrógeno/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Proteína Morfogenética Ósea 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Bases de Datos Genéticas , Receptor alfa de Estrógeno/genética , Estrógenos/metabolismo , Femenino , Expresión Génica/genética , Glicosilación , Humanos , Mucina-1 , N-Acetilgalactosaminiltransferasas/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...